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Chapter 2

Integration in the Complex Plan

1. Contour Integrals

2. Cauchy-Goursat Theorem

3. Independence of the Path

4. Cauchy's Integral Formulas and Their Consequences
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1. Contour Integrals

Suppose C is a curve parameterized by x = x(t), y = y(t), a  t  b, and A and B 

are the points (x(a), y(a)) and (x(b), y(b)), respectively. We say that:

(i) C is a smooth curve if x’ and y’ are continuous on the closed interval [a, b] and 

not simultaneously zero on the open interval (a, b).

(ii) C is piecewise smooth if it consists of a finite number of smooth curves 

C1, C2, ... , Cn joined end to end, that is, the terminal point of one curve Ck 

coinciding with the initial point of the next curve Ck+1. C = C1 ∪ C2 ∪ ... ∪ Cn.

(iii) C is a simple curve if the curve C does not cross itself except possibly at 

t = a and t = b.

(iv) C is a closed curve if A = B.

Terminology
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(v) C is a simple closed curve if A = B and the curve does not cross itself ; that 

is, C is simple and closed.

Smooth curve Piecewise smooth curve Closed but not simple Simple closed curve

▪ Integration in the complex plane is defined in a manner similar to that of a line 

integral in the plane.

▪ Integral of a complex function f(z) that is defined along a curve C in the 

complex plane. These curves are defined in terms of parametric equations 

x = x(t), y = y(t), a  t  b, where t is a real parameter. 
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▪ By using x(t) and y(t) as real and imaginary parts, we can also describe a 

curve C in the complex plane by means of a complex-valued function of a real 

variable t: z(t) = x(t) + iy(t), a  t  b.

▪ For example, x = cos t, y = sin t, 0  t  2, describes a unit circle centered at 

the origin. This circle can also be described by z(t) = cos t + i sin t, or even more 

compactly by z(t) = eit, 0  t  2.

▪ The point z(a) = x(a) + iy(a) or A = (x(a), y(a)) is called the initial point of C and 

z(b) = x(b) + iy(b) or B = (x(b), y(b)) is its terminal point.

▪ In complex variables, a piecewise-smooth curve C is also called a contour or 

path.

▪ If C is not a closed curve, then we say the positive direction on C (positive 

orientation), if we traverse C from its initial point A to its terminal point B.
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▪ In other words, if C is described by z(t) = x(t) + iy(t), 
a  t  b, then the positive direction on C corresponds 

to increasing values of the parameter t.

▪ In the case of a simple closed curve C, the positive 

direction roughly corresponds to the counterclockwise 

direction or the direction that a person must walk on C 

in order to keep the interior of C to the left.

▪ The negative direction on a contour C is the direction 

opposite the positive direction. 

▪ If C has an orientation, the opposite curve, that is, a 

curve with opposite orientation, is denoted by −C. 
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▪ On a simple closed curve, the negative direction corresponds to the clockwise 

direction.

▪ An integral of f(z) on C is denoted by               or                if the contour C is 

closed; it is referred to as a contour integral or simply as a complex integral.

Steps Leading to the Definition of the Complex Integral

1. Let f(z) = u(x, y) + iv(x, y) be defined at all points on a smooth curve C 

defined by x = x(t), y = y(t), a  t  b.

2. Divide C into n subarcs according to the partition a = t0  t1  ...  tn = b of [a, b]. 

The corresponding points on the curve C are: z0 = x0 + iy0 = x(t0) + iy(t0), z1 = 

x1 + iy1 = x(t1) + iy(t1), ..., zn = xn + iyn = x(tn) + iy(tn). Let zk = zk − zk−1, k = 1, ..., n.

3. Let ∥P∥ be the norm of the partition, i.e., the maximum value of |zk|.

( )
C
f z dz ( )

C
f z dz
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k k kz x iy  = +4. Choose a sample point                      on each subarc.

5. Form the sum: ( )

=


n
k kk

f z z
1

▪ Definition: Let f be defined at points of a smooth curve C 

defined by x = x(t), y = y(t), a  t  b. The contour integral of f 
along C is ( ) lim ( )

=→
= 

n
k kkC P

f z dz f z z
10

The limit exists if f is continuous at all points on C and C is either smooth or 

piecewise smooth.

▪ Theorem 1 (Evaluation of a Contour Integral): If f is continuous on a smooth 

curve C given by z(t) = x(t) + iy(t), a  t  b, then

( ) ( ( )) ( )
b

C a
f z dz f z t z t dt= 
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▪ Example 1: Evaluating a Contour Integral

Evaluate           , where C is given by x(t) = 3t, y(t) = t2, −1  t  4
C
z dz

( )( ) ( )
− − −

= − + = + + = +   C
z dz t it it dt t t dt i t dt i

4 4 42 3 2

1 1 1
3 3 2 2 9 3 195 65

▪ Example 2: Evaluating a Contour Integral

Evaluate             , where C is the circle x(t) = cos t, y(t) = sin t, 0  t  2
C
dz
z
1

( )it it

C
dz e ie dt i dt i
z

 
−= = =  

2 2

0 0

1
2

Properties

▪ Theorem 2 (Properties of Contour Integrals): Suppose f and g are continuous 

in a domain D and C, C1 and C2 are smooth curves lying entirely in D. Then
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( ) ( ) ( ) ,  

( ) [ ( ) ( )] ( ) ( )

( ) ( ) ( ) ( ) , 

=

+ = +

= + = 

 

  

  

C C

C C C

C C C

i kf z dz k f z dz k

ii f z g z dz f z dz g z dz

iii f z dz f z dz f z dz C C C
1 2

1 2

a constant

( ) ( ) ( )  
C C

iv f z dz f z dz
−

= − 

▪ Example 3: Evaluating a Contour Integral

Evaluate                       , where C is the contour shown below( )
C
x iy dz+
2 2

( ) ( ) ( )
C C C
x iy dz x iy dz x iy dz+ = + + +  

1 2

2 2 2 2 2 2

▪ Note: Theorem 2 also hold when C is a piecewise-smooth curve in D.
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The curve C2 is defined by x(t) = 1 y(t) = t, 1  t  2

( ) ( )( ) ( )
C
x iy dz t it i dt i t dt i+ = + + = + =  

1

1 12 2 2 2 2 2

0 0

2
1 1

3

( ) ( )
C
x iy dz it idt i+ = + = − + 

2

22 2 2

1

7
1

3

( )
C
x iy dz i i i+ = − + = − +
2 2 2 7 7 5

3 3 3 3

▪ Theorem 3 (A Bounding Theorem): If f is continuous on a smooth curve C and 

if |f (z)|  M for all z on C, then                          , where L is the length of C.( )
C
f z dz ML

( ) , ( ) ( ) ( )
b

a
L z t dt z t x t iy t   = = +

The curve C1 is defined by x(t) = y(t) = t, 0  t  1
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▪ Example 4: A Bound for a Contour Integral

Find an upper bound for the absolute value of                  , where C is the circle 

|z| = 4.

z

C

e
dz

z + 1

The length s of the circle of radius 4 is 8. |z + 1|  |z| − 1 = 4 − 1 = 3,

z zz x z z

C

e ee e e e e e e
dz

z z z z


 = =     

+ − + +
4 4 48

1 1 3 3 3 1 3 1 3

2. Cauchy–Goursat Theorem

Simply and Multiply Connected Domains

▪ A domain D is said to be simply connected if every simple closed contour C 

lying entirely in D can be shrunk to a point without leaving D.
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▪ In other words, in a simply connected domain, every simple closed contour C 

lying entirely within it encloses only points of the domain D. 

▪ A simply connected domain has no “holes” in it.

▪ The entire complex plane is an example of a simply connected domain.

▪ The annulus defined by 1  |z|  2 is not simply connected.

▪ A domain that is not simply connected is called a multiply connected domain; 

that is, a multiply connected domain has “holes” in it.

▪ We call a domain with one “hole” doubly connected, a domain with two “holes” 

triply connected, and so on….

▪ The open disk defined by |z|  2 is a simply connected domain;

▪ The open circular annulus defined by 1  |z|  2 is a doubly connected domain.
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Cauchy’s Theorem

Suppose that a function f is analytic in a simply connected domain D and that f’ 

is continuous in D. Then for every simple closed contour C in D, ( )
C
f z dz = 0

▪ Theorem 4 (Cauchy–Goursat Theorem): Suppose a function f is analytic in a 

simply connected domain D. Then for every simple closed contour C in D,

( )
C
f z dz = 0

Simply connected domain

Multiply connected domain
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▪ Example 6: Applying the Cauchy–Goursat Theorem

Evaluate              , where C is the ellipse
C
dz

z 2

1 ( )
( )

y
x

−
− + =

2
2 5
2 1

4
The rational function f(z) = 1/z2 is analytic everywhere except at z = 0. But 

z = 0 is not a point interior to or on the contour C. Thus,

C
dz

z
= 2

1
0

▪ Example 5: The functions zn with n a positive integer, sin z, cos z, ez, sinh z, and 

cosh z are analytic (they are entire functions), so for any closed contour C in 

the complex plane,

sin cos sinh coshn z

C C C C C C
z dz zdz zdz e dz zdz zdz= = = = = =      0
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When we introduce the cut AB the region bounded by the curves is simply 

connected.

The integral from A to B has the opposite value of the integral from B to A, so:

( ) ( ) ( ) ( ) ( ) ( )
C AB AB C C C
f z dz f z dz f z dz f z dz f z dz f z dz

−
+ + + =  =     

1 1

0

This result is sometimes called the principle of deformation of contours.

Cauchy–Goursat Theorem for Multiply Connected Domains

Suppose D is a doubly connected domain and C 

and C1 are simple closed contours such that C1 

surrounds the “hole” in the domain and is interior to 

C. Suppose, also, that f is analytic on each contour 

and at each point interior to C but exterior to C1.
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▪ Example 7: Applying Deformation of Contours

Evaluate                 , where C is the outer contour shown
C

dz
z i−
1

We choose the more convenient circular contour C1. By 

taking r = 1, we are guaranteed that C1 lies within C. C1 

is the circle |z − i| = 1, which can be parameterized by 

x = cos t, y = 1 + sin t, or by z = i + eit, 0  t  2.
it

itC C

ie
dz dz dt i

z i z i e


= = =

− −  
1

2

0

1 1
2

▪ If z0 is any constant complex number interior to any simple closed contour C, 

then: ,
( )

,  1( )

 =
=  − 

 nC

i ndz
nz z0

2 1
0 an integer
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( / )21 0
C
z dz =

▪ Analyticity of the function f at all points within and on a simple closed contour 

C is sufficient to guarantee that                      .

▪ However, the result in (∗) emphasizes that analyticity is not necessary; in 

other words, it can happen that                       without f being analytic within C. 

▪ For instance, if C in Example 6 is the circle |z| = 1, then (∗), with the 

identifications n = 2 and z0 = 0, immediately gives                         . 

Note that f(z) = 1/z2 is not analytic at z = 0 within C.

( ) 0
C
f z dz =

( ) 0
C
f z dz =

Evaluate                           , where C is the circle |z − 2| = 2
C

z
dz

z z

+

+ −
 2

5 7

2 3

▪ Example 8: Applying Deformation of Contours

Since the denominator factors as z2 + 2z − 3 = (z − 1)(z + 3)
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the integrand fails to be analytic at z = 1 and z = −3. Only z = 1 lies within 

the contour C, which is a circle centered at z = 2 of radius r = 2.

C C C

z z dz dz
dz

z z z zz z z z

+ +
= +  = +

− + − ++ − + −
  2 2

5 7 3 2 5 7
3 2

1 3 1 32 3 2 3

( ) ( )
C

z
dz i i

z z
 

+
= + =

+ −
 2

5 7
3 2 2 0 6

2 3

▪ Theorem 5 (Cauchy–Goursat Theorem for Multiply Connected Domains): 

Suppose C, C1, ..., Cn are simple closed curves with a positive orientation 

such that C1, C2, ..., Cn are interior to C but the regions interior to each Ck, 

k = 1, 2, ..., n, have no points in common. If f is analytic on each contour and 

at each point interior to C but exterior to all the Ck, k = 1, 2, ..., n, then:
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( ) ( )
k

n

C C
k

f z dz f z dz
=

=  
1

For example: triply connected domain D,

( ) ( ) ( )
C C C
f z dz f z dz f z dz= +  

1 2

▪ Note: Cauchy–Goursat theorem is valid for any closed contour C in a simply 

connected domain D. As shown in the figure below.
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▪ Example 9: Applying Cauchy–Goursat Theorem for triply Connected domain

Evaluate                , where C is the circle |z| = 3
C

dz

z +
 2 1

z2 + 1 = (z − i)(z + i), the integrand fails to be analytic at z = i and z = −i. 
Both of these points lie within the contour C.

   ( ) ( ) ( ) ( )
C

dz
i i

i iz
   = − + − = − =

+
 2

1 1
2 0 0 2 0

2 21

/ /

C C

i i dz
dz

z i z i i z i z iz z

 
= −  = − − + − ++ +  

 2 2

1 1 2 1 2 1 1 1

21 1

C C C

dz
dz dz

i z i z i i z i z iz

   
= − + −   − + − ++    

  
1 2

2

1 1 1 1 1 1

2 21
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3. Independence of the Path

▪ Definition: Let z0 and z1 be points in a domain D. A contour integral is 

said to be independent of the path if its value is the same for all contours C in 

D with an initial point z0 and a terminal point z1.

( )
C
f z dz

Suppose, that C and C1 are two contours in a simply connected 

domain D, both with initial point z0 and terminal point z1. Note 

that C and −C1 form a closed contour. Thus, if f is analytic in D, 

it follows from the Cauchy–Goursat theorem that

( ) ( ) ( ) ( )
C C C C
f z dz f z dz f z dz f z dz

−
+ =  =   

1 1

0

▪ Theorem 6 (Analyticity Implies Path Independence): If f is an analytic function 

in a simply connected domain D, then                is independent of the path C.( )
C
f z dz
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▪ Example 10: Choosing a Different Path

Evaluate         , where C is the contour with initial point 

z = −1 and terminal point z = −1 + i shown below
C
zdz 2

The function f(z) = 2z is entire, we can replace the path C 

C1 joining z = −1 and z = −1 + i. In particular, by choosing

C1 to be the straight line segment x = −1, y = t, 0  t  1. z = −1 + it 

( )
C
zdz it idt i dt tdt i= − + = − − = − −   

1 1 1

0 0 0
2 2 1 2 2 1 2

▪ Definition: Suppose f is continuous in a domain D. If there exists a function F 

such that F’ (z) = f(z) for each z in D, then F is called an antiderivative of f.

For example, the function F(z) = −cos z is an antiderivative of f (z) = sin z.
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Antiderivative, or indefinite integral, of a function f(z) is written

                     

where F’ (z) = f(z) and C is some complex constant.

( ) ( )f z dz F z C= +

▪ Theorem 7 (Fundamental Theorem for Contour Integrals): Suppose f is 

continuous in a domain D and F is an antiderivative of f in D. Then for any 

contour C in D with initial point z0 and terminal point z1,

( ) ( ) ( )
C
f z dz F z F z= − 1 0

▪ Example 11: Using an Antiderivative
ii

C
zdz zdz z i

− +− +

− −
= = = − −
 
11 2

1 1
2 2 1 2
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▪ Example 12: Using an Antiderivative

cos cos sin sin ( )
i i

C
zdz zdz z i

+ +
= = = + 

2 2

00
2

Evaluate             , where C is any contour with initial point z = 0 and terminal 

point z = 2 + i.

cos 
C

zdz

▪ If a continuous function f has an antiderivative F in a domain D, then              is 

independent of the path.

( )
C
f z dz

▪ If f is continuous and                is independent of the path in a domain D, then f 

has an antiderivative everywhere in D.

( )
C
f z dz

▪ Theorem 8 (Existence of an Antiderivative): If f is analytic in a simply 

connected domain D, then f has an antiderivative in D; that is, there exists a 

function F such that F’ (z) = f(z) for all z in D.
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▪ Example 13: Using the Logarithmic Function

Evaluate         , where C is the contour shown below
C

dz

z

Suppose that D is the simply connected domain defined by 

x = Re(z)  0, y = Im(z)  0. In this case, Log z is an antiderivative 

of 1/z, since both these functions are analytic in D.

▪ Note: under some circumstances Log z is an antiderivative of 1/z. For example, 

suppose D is the entire complex plane without the nonpositive real axis. The 

function 1/z is analytic in this multiply connected domain. 

( / )
C
z dz i=  1 2 0▪ If C is any simple closed contour containing origin,                             . In this 

case, Log z is not an antiderivative of 1/z in D, since Log z is not analytic in D.
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Log Log Log Ln Ln Ln 
 

= = = − = + − = + 
i i

C

dz
dz z i i i

z z

2 2

33

1 2
2 3 2 3

2 3 2

▪ Example 14: Using an Antiderivative of z−1/2

Evaluate              , where C is the line segment between z0 = i and z1 = 9
/1 2

1
C

dz
z

We take f1(z) = 1/z1/2 to be the principal branch of the square root function. 

In the domain |z|  0, −  arg(z)  , the function f1(z) = 1/z1/2 = z−1/2 is 

analytic and possesses the antiderivative F(z) = 2z1/2. Hence,

/

/
( )

99 1 2
1 2

1 2 2
2 2 3 6 2 2

2 2i i
dz z i i

z

  
= = − + = − −  
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4. Cauchy’s Integral Formulas and Their Consequences

▪ The value of an analytic function f at any point z0 in a simply connected domain 

can be represented by a contour integral.

▪ An analytic function f in a simply connected domain possesses derivatives of 

all orders.

▪ Theorem 9 (Cauchy’s Integral Formula or First Formula): Let f be analytic in a 

simply connected domain D, and let C be a simple closed contour lying 

entirely within D. If z0 is any point within C, then:

( )
( )

C

f z
f z dz

i z z
=

−0
0

1

2

We are going to examine several more consequences of the Cauchy–Goursat 

theorem. The most significant of these is the following result:
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▪ Example 15: Using Cauchy’s Integral Formula

Evaluate                           , where C is the circle |z| = 2
C

z z
dz

z i

− +

+
2 4 4

f(z) = z2 − 4z + 4 and z0 = −i as a point within the circle C. f is analytic at all 

points within and on the contour C.

( ) (3 ) ( )
C

z z
dz if i i i i

z i
  

− +
= − = + = − +

+
2 4 4

2 2 4 2 4 3

▪ Example 16: Using Cauchy’s Integral Formula

C

z
dz

z +
 2 9

Evaluate                    , where C is the circle |z − 2i| = 4

/( )z z z i

z iz

+
=

−+2
3

39
z0 = 3i is the only point within the circle C. 
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f(z) = z/(z − 3i). This function is analytic at all points within and on the 

contour C.
( )

C

z i
dz if i i i

iz
  = = =

+
 2

3
2 3 2

69

▪ Theorem 10 (Cauchy’s Integral Formula for Derivatives or Second Formula): 

Let f be analytic in a simply connected domain D, and let C be a simple closed 

contour lying entirely within D. If z0 is any point within C, then:

( ) ! ( )
( )

( )

n
nC

n f z
f z dz

i z z +
=

−
0 1

02

▪ Example 17: Using Cauchy’s Integral Formula for Derivatives

C

z
dz

z z

+

+
 4 3

1

4
Evaluate                       , where C is the circle |z| = 1
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The integrand is not analytic at z = 0 and z = −4, but only z = 0 lies within the 

closed contour.

▪ Example 17: Using Cauchy’s Integral Formula for Derivatives

( )C

z
dz

z z i

+

−


3

2

3
Evaluate                       , where C is the contour shown below

( )/( )
( )

!C

z z z z i
dz f i

z z z z z

 + + + +
=  = =

+ +
4 3 3 4 3

1 1 4 1 2 3
0

2 324 4

C is not a simple closed contour, we can think of it as the 

union of two simple closed contours C1 and C2

( ) ( ) ( )C C C

z z z
dz dz dz

z z i z z i z z i

+ + +
= +

− − −
  

1 2

3 3 3

2 2 2

3 3 3
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Some Consequences of the Integral Formulas

▪ Theorem 11 (Derivative of an Analytic Function Is Analytic): Suppose that f is 

analytic in a simply connected domain D. Then f possesses derivatives of all 

orders at every point z in D. The derivatives f’, f’’, f’’’, ... are analytic functions 

in D.

▪ Theorem 12 (Cauchy’s Inequality): Suppose that f is analytic in a simply 

connected domain D. and C a circle defined by |z − z0| = r that lies entirely in 

D. If |f(z)| ≤ M for all points z on C, then:

▪ Theorem 13 (Liouville’s Theorem): The only bounded entire functions are 

constants.

( ) !
( )0

n
n

n M
f z

r
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▪ Theorem 14 (Fundamental Theorem of Algebra): If p(z) is a nonconstant 

polynomial, then the equation p(z) = 0 has at least one root.

▪ Theorem 15 (Morera’s Theorem): Suppose that f is continuous in a simply 

connected domain D and if                        for every closed contour C in D, then 

f is analytic in D.

( ) 0
C
f z dz =

▪ Theorem 16 (Maximum Modulus Theorem for Analytic Functions): Suppose 

that f is analytic and nonconstant on a closed region R bounded by a simple 

closed curve C. Then the modulus |f(z)| attains its maximum on C.

▪ Example 18: Maximum Modulus

Find the maximum modulus of f(z) = 2z + 5i on the closed circular region |z| ≤ 2.

▪ If the stipulation that f(z) ≠ 0 for all z in R is added to the hypotheses of 

Theorem 16, then the modulus |f(z)| also attains its minimum on C.
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( )( ) ( )( ) ( )

( )

+ = + + = + − = − − +

+ = + +

z i z i z i z i z i zz i z z

z i z Im z

2

2 2

2 5 2 5 2 5 2 5 2 5 4 10 25

2 5 4 20 25

Because f is a polynomial, it is analytic on the region defined by |z| ≤ 2.

max|z|≤2 |2z + 5i| occurs on the boundary |z| = 2 ⇒ |f(z)| attains its maximum 

when Im(z) attains its maximum on |z| = 2, namely, at the point z = 2i.

| | ( ) ( ) + = + + =zmax z i 2
2 2 5 4 2 20 2 25 9

▪ Note: In Example 18 f(z) = 0 only at z = −5/2i and that this point is outside the 

region defined by |z| ≤ 2. Hence |f(z)| attains its minimum when Im(z) attains 

its minimum on |z| = 2 at z = −2i.

| | ( ) ( ) + = − + =zmin z i 2
2 2 5 4 2 20 2 25 1
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